Wet yd lind

December 4. 1980
TEL 634

```
TMI Program Office
Attn: Mr. John T. Collins, Deputy Director U. S. Nuclear Regulatory Commission cfo Three Mile Island Nuclear Station Middletown. Pennsylvania 17057 \(!\)
Dear SIF:
```

```
Three M1le Island Nuclear Station, Unit 2 (TMI-2)
    Operating License No. DPR-73
    Docket No. 50-320
    EPICOR II LIner Evaluation Status
```

Eorwayded herewith is the initial evaluation of the possibility of corrosion of EPICOR II liners, which corrosion might result in loss of full integrity of the liners with resultant leakage. Also. included below is other information related to this subject.

It must be remembered that leakage of the liners would have only very minimal consequences. This is because of the cumulative effect of several factors, such as:
o The Ere water content of each liner can be expected (based on extensive costing of the dewatering procedure) to be less than 1.5 gallons--possibly approaching zero.

- Radioactivity of residual water, based on experience with the EPYCOR I and II systems, is expected to be minimal.
o it worst, based on the attached evaluation, the loss of litegrits, should it occur, would be only in the nature of pinhole leaks. not a failure that might alter the structural integrity of the lIner.
- The liners are stored in a hish-integrity, massive structure with internal drains and a sump. that would confine any credible leakage, conducting liquid to the sump from which it could be removed for appropriate handling and treatment.

Perusal of the attached evaluation report will, we believe, make it apparent that, for the parameters which might contribute to the possibility of corrosion, the worst credible situation has been assumed. Even so, with this assumption of the worst agr essive possible combinaion of variables. it is concluded that only eight (8) of the sixtyfive (65) liters studied might fall sooner than twenty-five (25) years. *inder the assumed conditions, these eight liners might be derforaced in some fifteen (15) to nineteen (19) months.

However, it is very likely that the parameter that is the principal contributor to corrosion, the pH of water in the liner, is not at all likely to be as low in these eight liners as was assumed. The material in the liners was selected and located with the intent of assuring that the residual water would be over 5 pH . Sampling of eight EPICOR I liners, in storage for up to one (1) year, showed that wille the final effluent from the liner was as low as 3.3 pH , in all liners, the pH of the later sample was over 5 . It, therefore, seems that there is assurance that the low DH values in the EPICOR II IIners' effluent have not persisted, the pH has risen, and that corrosion rates are less than those used in the study.

Every eifort has been and continues to be made to gain information that would allow a more precise assessment of conditions existing in these IIners. Several programs such as: (1) Sampling EPICOR II Liners, (2) More Exact Integrated Dose Calculation, (3) Exchange of Information with Epicor, Inc., and (4) Testing Results from Various Resin Degradation Studies, all pose as oroviding information that may improve the generalized assumptions made in these evaluations.

In addition to discussing and transmitting the evaluation report, this letter also discusses, below:

- Resin integrated dose calculacions
- Liner Sampling Probram
- EPICOR II Liner Contingency Plans
- Einer Staging "ocule

YETALLURGICAL EXALUAAIIO: REPORT

A. LIMER ENTERMAL ESUVROMMENT ASSESSMENT

The interal environment of an EPICOR resin ilner is based upon such variables as chemical, themal, and radiation reactions. All variables must be accounted for when deteroining the environment existing within a liner at any specified time. Various assumptions have been made in characterizing these reactions. A continuing effort is being made toward verifying these assumptions. It is expected the liner sampling program, completion of the integrated dose calculation, and the exchange of information with Epicor. Inc., and the avallability of Penn State, Georgia Institute of Technology, and Brookhaven National Laboratory (BNL) testing results will assist in this efiort.

3. LINER METALLURGICAL EVALUATION

Following the categorization of the internal environment of the liners, a metallurgical evaluation was performed. This analysis included several assumptions while attempting to detemine when a liner might first be perforated. Since the assumptions are subject to change in the near future, the conclusions are also subject to change. The Attachment to this letter is the study from which these conclusions were reached.

As the internal environment of a liner is more accurately characterized, this metallurgical evaluation will be updated to present an actual vs. a worst case condition.

RESIN INTEGRATED DOSE

Very general calculations of Integrated Dose have been made and reported to the NRC and Brookhaven National Laboratory (BNL) personnel. These calculations were based on methods employed by Georgia Institute of Technology. ${ }^{1}$ As has been reported, these were considered preliminary until a more exact analysis had been completed.
A method emploving a computer code has now been developed and bench marked to actual liner radiation surveys. A discussion of this method will now be forwarded to the NRC by December 18, 1980.

EPICOR LINER SAMPLING PROGRAY

One effort in progress that will significantly aid in more precisely defining the internal environment of an Epicor liner is the liner sampling program. Two recent meetings with NRC representatives have been held discussing the details of this program; therefore, the details are not provided herein. An updated summary is discussed:

A. TMI SAYPLING PROGRAM

The TMI Sampling Program is proceeding with a liquid and gas sample from prefilter expected to be taken the latter part of December. 1980. The prefilter and its storage location were inswected on November 21, 1980. A video tape of this inspection was made. This inspection found the liner in excellent condition with nothing unusual observed. A test of the liquid and gas samoling procedure is expected during the week of December 1, 1980, in the EPICOR II Chemical Cleaning Building. This test will verify the adequacy of the procedure. Some of the items which MetEd/GPU are hoping to gain frow this task are:

- Nater Sample and Analysis
- Gas Sample and Analysis
- Iner Gas Pressure
- Internal and External Radiation Profile
- Thorough External Liner Inspection with Video Tape

Assuming no problems are experienced with prefilter 16, preifiter 3 will undergo the same sampling program at a later date. A contingency plan has been developed should a water sample not be withdrawn. This plan involves adding an organic material to the liner which would liberate resin water of hydration. In this manner, this liberated water can then be removed from the liner by the underdrain system. This method allows water sampling, with the added benefit of inerting a portion of the resin bed.

[^0]
3. DOE SAAPLING PROGRAM

The DOE Liner Sampling Program has just recently gained full endorsement from the DOE and MetEd/GPU. This program should have significant progress in the near future, especially since the TMI Program should provide helpful information related to liner handling and insnection methods. The DOE propram is more inclusive than the TMI effort and will aid in characterizing the internal environment of a liner and assessing the integrity of the liner. Since NRC representatives have recently received a presentation on this effort, details are not provided herein. However, it is requested the NRC reply to MetEd/GPU letter, TLL 413, dated September 4, 1980, regarding a waiver for shipment nf non-solidified Epicor liners. Timely receipt of a waiver will remove an element of uncertainty from this program that currently exists.

EPICOR II LINER CONTINGENCY PLAN

As discussed previously, a leak of a liner, even though it should occur, will have little consequence. Even so, should it be decided that preventive or corrective actions are warranted, MetEd/GPU has been considering what action aight be taken should a problem exist. Two (2) alsernative actions have been identified as follows:

d. CHEMTCAL NJJUSTIE.TT

An investigation has been made into how the corrosiveness of :esins misht be adjusted by chemical means. This work has included contacting various resin experts as well as performing tests at TMI. GPU laboratory, and contractor facilities. This work involves adding an organic material to a resin bed. The resins chemically bind chis material preferentially to the water of hydration, thereby liberating the water of hydration. In this manner, the medium within the liner which allows for the transfer of ions during corrosive reactions would be replaced with a material that would fail to act as a transferring medium. This action would make the bed essentially inert by retarding corrosive attack. Liberated water would be rew moved by dewatering methods. A major concern with this procedure is the possibility of releasing the bound radioisotopes. A test was performed on a resin column previously used for verification of the Epicor resin mixes for processing the 'B' Reactor Coolant Bleed Tank (RCBT). The column used for the test was scaled and loaded with resins similarly to a prefilter. 250 mi of ' B^{\prime} RCBT water was passed through this column dewatered by draining. The organic material visibly dried the resins. The liberated water contained. only very low concentrations of radioisotopes indicating the radioisotope to resin bond was not altered significantly.

The details of this option and exact material selection have not been aade, however, this option offers significant advantages.
B. ADJITIONAL LINER BARRIER PROCRAY

A second contingency plan involves placing the carbon steel liner into a container made of more corrosion resistant material. This container will provide an additional protective barrier to liquid loss around the sides and bottom of the liner. An engineering package will be developed for this option.

LINER STAGING MODULE

EPICOR liners have been stored siace removal from service. Two (2) items of interest are discussed below:

A. MOVEMENT OF LINERS

Liners in the Interim Liner Staging irea have been moved to the A and/or B Liner Staging Module at the rate of two (2) per week. This rate has been constant over the past few weeks and should remain constant bearing adverse weather conditions. It is of note that some of the oldest EPICOR II liners have already been moved. For example, prefilters 1, 2, 3, 4 , and 5 have been successfully moved. No irregularities or unusual conditions were noted or experienced during these evolutions.

B. STAGING YODULE SUMP WATER

The ' A ' and ' B ' Liner Staging Modules share a common sump. This sump collects liquids encering individual module cells or leakage directly into the sump. Design of the modules was intended to preclude rain water introduction, however. it has been observed the sump level increases slightly during rain. The sump water has been recently analyzed by both TMI and offsite laboratories. This analysis has shom the presence of Tritium at a concentration of $3 \times 10^{-5} \mathrm{uc} / \mathrm{ml}^{2}$ and Cesium 137 at $2 \times 10^{-8} \mathrm{uc} / \mathrm{ml}$. For comparison. the IRC limits (10 CFR Part 20) for these isotopes in water discharge to restricted areas are, for Tritium, $3 \times 10^{-3} \mathrm{uc} / \mathrm{ml}$ and Cesium, $2 \times 10^{-5} \mathrm{uc} / \mathrm{ml}$, many times higher than found in the sump. Four (4) possible scenarios have been identified which could explain how these isotopes entered the sump.

1. One or more liners may well have been externally contaminated when in service. While in storage, changing humidity and temperature conditions could cause condensation resulting in the washing of this contamination to the sump.
2. One or more liners may have been perforated releasing free standing water existing in the liner. This liquid would have been collected in the sump.
3. The heat generated by the deposited curies could cause a vaporization of the water of hydration of the resins. This vaporization could carry radioisotopes with it. Fnowing the liners release gases at approximately 2 PSI these radioisotopes could be released from the iner, then condensed in the storage cell. This condensation would be collected in the sump. (While liners do not leak with up to 18 psig water pressure, they have been found so leak air through the threaded connections at 2 psig).
4. As resins break down due to chemical and radiation interraction gases are liberated. Although the gases themselves may not necessarily be radioactive, they could carry radioisotopes with them. These radioisotopes could be released from the liner and collected in the sump, similarly to method 3.

The precise mechanism has not been identified nor has any credible method been excluded.

However, as the Interim Liner Staging Area is emptied, the storage cells are being studied with respect to contamination of the cells. To date, no contamination has been detected in the cells once containing resin liners.

There is not, at present, any reason to believe a liner is leaking. To the contrary, both the above-described and attached metallurgical evaluation and the studies of the Interim Liner Staging Area lead to the conclusion that the source of the contamination in the sump is other than a perforated liner.

Action is in progress to minimize further the introduction of rain water into the sump. The sump will be pumped dry and any additional liquid introduction will be closely monitored.

It is premature to draw any conclusions concerning the low levels of contamination in the Staging Module Sump Water. MetF.d/GPU recognizes the importance of identify tag the source of this contamination at the earliest possible date. The NRC will be kept advised of our activities in this regard.

The above up-dates the NRC on current activities at TMI-2 related to EPICOR II liner integrity. We will continue to keep you informed.

Sincerely,

Vice-President and Director, TMI-2

GKH:RIN:dad

Enclosure
cc: Bernard J. Snyder

```
EvaluatIon Of THE LINER
INTEGRITY OF THE TH
UNIT 2 EPICOR II
RADHASTE SYSTEYS
```

F. S. Giacobbe
K. H. Fredericks

8012100458

The contents of chis study are based upon available data at the tine of issuance. Data which may have a direct bearing upon the conclusions is expected in the imediare furure. This data will include, but not be limited 50, the Epicor Proprietar: Disclosures, daca from liquid samples $c 0$ be caken frou selected prefilcers and the results of various resin degradarion studies which are currentis in p:ogress. The right co alcer: any poriion is reserved.

Ineroduceion

The integrity of the Epicor II Spent Resin Liners as affected by various incernal erviroments wich are believed co exist at this time was evaluared. Effluent data us provided by TMI for the sixty-five liñers wich coneained spent resin as of August. 1980. This data was revieved by the GPUN System Laboratory Chemistry Section in order co provide a basis for derermining the nature of the emvirorment which would be present durdog storage. When additional ifners are processed or wien additional data regarding the internal ervironment is developed, chis data wil be evaluated and a revised report avallable 1ssued. Asalysis of the daca currenty/led to a classification of the internal envi:oment into Eour caregories. These categories grouped the various environzents according to the corrosiveness to the ASF: A36 carbon steel IIner base saterial. A corplete analysis of the envirorments are contained in Artachment I. The sost aggressive enviroment (category 4) postulated is a dilute. air saturared, hỵrochloric and boric acid solution weh a pH of approximately 2.5 and very lou solids/salt concentration. Fased on the dewarering reshnique ut111zed (1). 1t has been demonstrated that a maximun of 1.5 gallons of chis solution can be expected to be on the floor of the IIners.

Nehough corrosion resistant coatings had been applied to the iner Internals no nondestructive examinarions were performed on the coarings after application. Subsequent exalnation of liner coatings onsite with a holiday derector found them to contain numerous defects, the analysis of the liner Integrity, cherefore, vas carried out assuming that the 1.5 gallons of solution vere in direct contact with a pinhole in the coating and that the carbon steel substrate is currently being acted upon by the internal enviroment. This case would produce the earliest IIner penerration as opposed to a iner with no coating, with a large parch of coating rewoved or a defect fiee coaring.
(1) TMI 2 Spenc Resin Liner Dewatering Study, April 1980.
Incroduceion (coneinued)
Tests conducted onsite have also shown that the liners cannot be pressurized above 2 psig, thus eliminating concerns from overpressurizing the Iners due to evolution of gases from the resina.
Another case wich needs to be addressed but 4111 not be discussed In this report is direct contact of the resin beads uith the coating and or the carbon steel when there is no free-standing varer. This vill be evaluated and will be reported on at a later date.
Conclusions

1. Final effluent chewistry data for sixty-five iners have been reviewed and caregorized in four groups representarive of their inherent corrosiveness to the inners. These categories are:
(1) Solutions with $\mathrm{pH} \geq 5$ and conductivities <50 wrhos.
(2) Solutions with $\mathrm{pH} \geq 5$ and conductivities of 50-4000 umhos.
(3) Solutions uith pH 3.5-5.0 and conductivities < 70 umhos.
(4) Solutions with pH 2.5-3.5 and conductivities of 100-700 umhos.
2. Caregory (i) is the most agrressive solution. Four iners fall
Inco chis category as follous:

IIner Designation

- PF-16
- PF-17
- PF-18
- PF-19

Under the current worst case conditions postulated, smail pinhole penerrarion of liners could be predicted at the earliest in 15 months for a 1/2" 11ner and 19 months for a $5 / 8^{\prime \prime}$ 1iner. This, hovever, is conservarive considering the steady-state corrosion rate assumed is the initial high rate with vould be expected to decrease to some lover value uith time.

Conclusion (continued)

3. Category (3), although the solution is alightly higher in ph than category (4), it is atill sufficienty 1 ou that a slight drop in phowill probably occur within pits producing corrosion rates sinilar to caregory (4) \%. Liners in cazegory (3) are as follous:

IIner Designation

- PF-40
- PE-41
- PF-42
- PF-43

Size

$4^{\circ} \times 4^{\circ}$
$4^{\circ} \times 4^{\circ}$
$4^{\circ} \times 4^{\circ}$
$4^{\circ} \times 4^{\circ}$

Metal Thickness

$$
\begin{aligned}
& 1 / 2^{\prime \prime}-5 / 8^{\prime \prime} \\
& 1 / 2^{\prime \prime}-5 / 8^{\prime \prime} \\
& 1 / 2^{\prime \prime}-5 / 8^{\prime \prime} \\
& 1 / 2^{\prime \prime}-5 / 8^{\prime \prime}
\end{aligned}
$$

These liners under vorst case conditions could also be perforated in the $15-19$ month period.
4. For purpose of this analysis "worst case" has been defined as a. O1: hydrochloric acid solution at $75^{\circ}-90^{\circ} \mathrm{E}$ in direct contact with the carbon steel substrate via a pinhole defect in the coating. The solution is alt saturated, hovever, no intrusion of air into the container is predicted, therefore, with rime the oxygen concentration will decrease as it is consumed in the corrosion process. The corrosive attack is expected to proceed in a pirting mode.
5. Categories (1) and (2), which encoopass fifty-seven liners, have pH values in excess of 5 . These liners are expected to have a life in excess of 25 years not councing any contribution to life by the coating and assuming that resin degradation will not lower the pH. Attactaent II describes the corrosion of these inners in oore decall.
6. For those liners where solutions are in contact only with the coating and no defects are assumed, life expectancy for the coating would be conservatively on the order of cen years. This being the cypical life of a coating in contact with demineralized witer with no coating maintenance.

Conclusion (contisued)

7. Long cerm resin degradation is expected to release borate anions plus amines wifch are predicted to establish a buffering action and possibly raise the pH of the solution. In this event the erriroment will become less aggressive to the carbon steel substrate (see Actaciment I).

Discussion

The corrosion of the carbon steel aubstrate for the types of environments defined will be most significantly affected by the hydrogen ion conceatration (pH) and oxgzen concentration of the solution. The oxgsen concentration for the intermal enviroments defined, hovever, will be the overriding factor Influencing both short tem and long term corrosion rates. As the concentration of oxygen within the sealed liner is depleted the corrosion rate will be decreased accordingly. This factor will be most significant for liners in categories (l) and (2) were the corrosion rate is sufficiently slou that aggressive pitting is not anticipated but rather localized corrosion may occur initlally with a gradual spreading out of the corrosion with time.

For category (4) IIners, maximu corrosion rates for dilute aerated hydrochoric acid solutions vould be on the order of 400 ells per year (mpy) as discussed in "Corrosion and Corrosion Control'. 2nd Ed. Rnoring that the chichoss at the botton of the $4 x 4$ 1iners is 500 wils (min) pinhole perforarion could occur in as soon as 15 months assuning no coapetition for oxygen froa other locations within the liner wich could decrease the available oxpgen thus slowing the corrosion rate and that the erviroment is able co maintain the initial high corrosion rate. Maintaining this high corrosion rate for lone periods is unlikely but until the steady state rate can be adequately defined it is the most conservative approach.

In regard to category (3) liners, although the enviromsent is somewhat less aggressive if one considers pitting as the prisary mode of cortosion then

Abstract

Discussion (continued) at pH 3.5 , it would be neceaary to asaign a corrosion rate similar to that for category (4).

Liners in categories (1) and (2) with their assumed environments $(\mathrm{pH} \geq 5)$ would be expected to experience corrosion rates on the order of 10 mpy. In this pH range, hewever, the formacion of ferrous hydroxide is expected and this uill both slou th diffusion of oxygen and act to produce an alkaline environment at the corroding surface. These factors wil minimize both the piteing rate and general corrosion.

The porentlal for seress corrosion cracking to occur as well as hydrogen ewbritelement were also considered. These corrosion mechanisms, however, were dismissed at this time as the current environmental, material and stress paramerers did not indicate those mechanisms would occur. As addicional data is available to Eurther define the internal conditions, these mechanisms uill be reconsidered as necessary.

In discussions with the coating manufacturers, it was learned that neither coating utilized is recommended for lou pH enviromments; however, chis recommendation, in general, is based on concentrated acid solutions and not dilute solutions. The fact is that few laboratory tests were conducted by the coating manufacturers in dilute acids and no cest data exises for a 1% or less HCl solution. Tests in 1.5% oxalic acid at room cemperature, however, showed no degradation in eight months on the Plasite 7155. Phenoline 368 testad in is citric acid at $130^{\circ} \mathrm{F}$ and $150^{\circ} \mathrm{F}$ showed both acceptable and unacceptable results In different cests. It is the opinion of the coating vendors, however, that the dilute acid at ambient cemperature u111 not be significantly more agressive than dewineralized water in cerms of lts effect on the coaring but rather its effect on the carbon steel substrate due to exposure through coating defects or long cerw permeation will be critical. Initial results frow on-going GPU Laboratory

Discussion (continued)

cests on the effects of the proposed vorat case environment on the liner coatings has shown no coatiag degradation in tvo months. It is our assessment ihat the coatings u111 be unaffected in the near tery by the aqueous enviroment and can be expected to have a lifetime similar to that of coatings exposed to demineralized vater (approx. 10 years). This assessment, hovever, may be altered based on the results of tests of resin beads in direct contact vith the coating in a non-aqueous environment. Although laltially the coating most likely uill contribute to the overall liner iategrity. 10 the long term its effectiveness in preventiag corrosion u111 be nil.

Recomendations

1. Liners in caregories (3) and (4) will require near cerm remedies to preclude leakage to the environment. Discussion should be comenced to 1dentify a satisfactory method for restoring long term iategrity. Potential solutions vould include rethods to modify the internal eavironment chemirally by raising pi or scavenging oxygen.
2. Efforts should be made to sample the liquid remaiaing in liners in categories (3) and (4) inicially folloved by categories (1) and (2) co confira or disprove the current hypothetical environments. This dats vould afford a wcre deflaitive analysis. If possible, gas samples should also be taken to deteraine if hydrogen is being produced or other gases wich might indicate Aegradation of the resin beads.
3. Contingency plans aeed to be developed in the event leaksge can result from corrosion to the liner. This might be best accomplished by des18ninis corrcsion resistant container into which the current liaers can be placed.
4. After the effluent sample has been analyzed as recomended in item 2. Electrochemical corrosion tests should be conducted to determine the actual corroaion rates which can be expected from the actual inner environment.

Recomendurions (cone inued)

5. Once the resins have been identified which exist inside the liners, laboratory tests should be conducted exposing carbon steel coupons. to resins of the same cype and condition under the influence of a radiation source producins a dose rate equivalent to that inside the inners. The coupons should include seressed samples as well as welded amples.

ATTACRMENT I

```
Evaluation of Incernal Environment
    Eplcor Liners for Storage of
    Spent Resins
```

K. H. Frederick

Rev. 1, December 2, 1980

Two basic sets of condicions must be considered in order to make a complete evaluation of environmental conditions uithin the resin-liners Uhich are employed for creatment of radioactive uastes at Three Mile Island. The first consideration ia the chemistry of the free-standing liquidsand gasses which remain in the cask when it is placed in storage. The second consideration is the changes which raterials within the liner uill undergo. These changes uill consist largely of resin decomposition from normal aging or from radiation effects. Both of these processes represent long-range concerns.

Chemistry data from more than sixty liners has been evaluated and the results have been emploved to characterize the conditions inside stored liners. Experimental data indicates that following routine de. Hatering, maximum of 1.5 gallons of liquid remain in the bottom of a IIner. For purposes of evaluation, it is conservatively assumed that this liquid vill have the same chemical compositior ss the last process liquid which uas measured at the effluent of the liner during service.

Tables One, Two and Three concain cabulations of the final effluent data for the Epicor II liners used in the evaluations. Initial examination of the data suggests four general categories which are as follow'

1. Liners in chis category are characterized by low conductivity. effluent and ph values in the range of 5 or greater. Conduct ivity values are generally less than 50 umho and range doun
to less than 1 umho. This range of pH and conductiviey values suggeses a solution of boric acid in demineralized water. with iminute quancities of neutral salts. Conductivity values toward the higher side of this range suggest the presence of slightly greater quanticies of dissolved salts.
2. These liners concain primarily mixcures of salts. The ph value ranges from approx. 5 to 8 with the majority in the range of 7. Conducivities range froul 50 to 4000 umho with the rajoricy falling betwee.: 200 and 2000 umho.
3. Liners in this category contain very dilute mixtures of neutral salts and strong acids. pH values range from 3.5 to 5.0 and conductivities are less than 70 umho.
4. This category also contains liners with mixtures of neutral salts and strong acids but is somewhat less dilute than those described in Category 3. pH values range from 2.5 - 3.5 and conductivieles from 100 - 700 umho.

For purposes of evaluating actual concentrations of the various constituents of solutions, the predominant salt was assumed to be sodium chloride and the strong acid hydrochloric acid. Where the ph values were lower than could be atiributed to boric acid concentrations corresponding to measured boron concencracions, hydrochloric acid was assumed to be present and a concentration was calculated from the ph values. A conduc-
tivity value was assigned to the calculated acid concentration and the difference between this calculated conductivity and the measured conducEivity was assumed to result from contribution by sodium chloride. Then pH values were neutral, sodium chloride was assumed to be the sole contributor to conductivity. Equivalent conductances are from "CRC Handbook of Chemistry and Physics, 50th ed." and values from the 0.02 gram equivalents/ 1000 cubic cm columin were used. Following is a listing of the conditions which were assumed in making the analysis of each category:

Category

| Parasete: | 1 | 2 | 3 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| PH | 5.0 | $7 . C$ | 3.5 | 2.5 |
| Conductivity, umho | 50 | 2000 | 70 | 700 |
| Boron, as PPW B | 750 | 1500 | 950 | 1400 |
| Sodium, Ppm | 1.0 | 200 | 1.0 | 2.0 |

Accordingly, the conditions in liners from each category should approximate the following:

Category

Paramete:

Boric Acid, wi\%
Hydrochloric Acid, wion
Sodium Chloride, wï
(1) Not present

Since there is evidence of strong acid presence in categories 3 and 4, a calculation was made to determine the mass of iron which could be displaced by the 1.5 gal . max. of the solution assumed to be present (from che GPU dewatering report) at the boctom of the liner. This quantity of iron would amounc to approx. 0.1 g for liners in Cacegory 3 and approx. 18 for liners in Category 4, after which the acid would be spenc.

A second consideration is the effect of oxygen remaining in the liner after ic is sealed. Oxygen concained in free space at the cop of the liner, chat present in void spaces between dewatered resin beads and dissolved oxygen present in the water of hydration were considered. A free space of 18 inches at the top of each liner and a void volume of 40% were assumed. A dissolved oxygen content of 8 ppm was assumed for the water of hydration and water of hydration volumes of 125 and 450 gal . were assumed for the 4×4 and 6×6 liners. These assumptions would yield approximately 2708 $(0.6 \mathrm{lb})$ of cotal oxygen in a 4×4 inner after closure and $800 \mathrm{8}(1.86 \mathrm{lb})$ in a 6×0.

The oxygen present within liners would ultimately be expected to react with either materials within che liner or with exposed portions of the metal liner itself. The conservative assumption would be that all of the oxygen reacts with the liner. Although a series of intermediace reactions would be expected to cake place, the final products should be iron oxides. Inicially, $\mathrm{Fe}_{2} \mathrm{O}_{3}$ should be the predominant species. As the oxygen in the liner is depleted, formation of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ would be favored. In actuality,

Initial decrossilinkage of the cation resins vould probably not resul: in any pH changes, since the functional groups vould remain unaffected. More severe degradation vould destroy the functional groups releasing sulfur compounds and the associaced cation. Since sodium is the major cationic constituent, neutral compounds such as sodium sulfate vould result with no depression of PH values.

Since it appears that radiation results in similar decomposition products to those produced by chemical agents, it is not anticipated that the environmental changes to the liner interiors would be significartly different than those which would resule from normal resin decomposition due to aging. Radiation decomposition is belleved to result from the effects of peroxides which are produced by irradiation of water associated with the resin and, perhaps, to a lesser extent from direct cleavage of molecule bonds by the radiacion. According to Cohen (1), the formation of peroxides occurs when reducing and oxidizing radicals are spatially separated and exist at high concentrations. This condition vould exist only in the presence of very high beta-garna exposure rates, neutron exposures or as the result of other reactions such as n, alpha uhich possess very high linear energy transfer velues. at lover densities of energy absorpition, the recombination reaction will be favored and peroxide levels should be minimal. This condition is expected to exist within the stored liners.
(1) Cohen, Paul, "water Coolant Technology of Power Reactors", Gordon and Breach Science Publisher, New York, 1969.
some combination of the two oxides would be expected.
Assuming no reaction with anion resin which is stored in a Iiner the oxygen could be expected to react with the quanticies of iron described in the cable below.

Competicion from anion resin would be expected co reduce chese quantities significantly, especially if the epoxy coating of the liner did not have an inizial defec:。

Long-term resin degradacion will contribuce co changes in the internal environment of the liters. Normal decomposicion and radiation induced decomposicion are pocential contributors. It is assumed chat both will resule In similar products of decomposicion. The anion resin appears most vulnerable with the breakdown mechanism being loss of functionality. The cation resin is significancly more resistant and is likely co suffer loss of cross linkage as les primary decomposition mechanisw.

Loss of anion functionality would result in che release of the associaced anion and various amines such as crimechylamine. Since the predominant anions are borates, which are buffers, and the amines are alkaline in nature, such decomposition would benefic the liner environment by buffering strong acids and/or raising the ph.

TABLE ONE
PREFILTER SUMALARY
$\left.\begin{array}{cccccc}\text { ID } & \begin{array}{c}\text { Final } \\ \text { ph }\end{array} & \begin{array}{c}\text { Final } \\ \text { Cond, unho }\end{array} & \begin{array}{c}\text { Final } \\ \text { NF }\end{array} & 5.15 & 3.22\end{array}\right)$

10	Final pH	Final Cond, umho	$\begin{gathered} \text { Final } \\ \mathrm{Na}, ~ p p m \end{gathered}$	B, Ppm	Category
PF-26	4.96	13.1	1.23	757	1
PF-27	4.82	6.31	<1	779	1
PF-28	7.19	440	35	1514	2
PF-29	5.55	18	4	757	1
PF-30	5.0	6.68	<1	763	1
PF-31	5.12	4.6	<1	965	1
PF-32	5.19	4.12	<1	963	1
PF-33	5.66	1.86	<1	595	1
PF-34	4.70	9.25	<1	920	1
PF-35	5.34	3.40	<1	693	1
PF-36	5.43	3.15	1.5	985	1
PF-37	5.08	4.6	2.1	963	1
PF-38	5.13	4.0	<1	1039	1
P5-39	5.53	8.5	<1	909	1
PF-40	4.0	41.5	<1	930	3
PF-41	3.8	55	<1	985	3
PF-42	4.7	9.65	<1	952	3
PF-43	3.67	69.0	<1	1017	3
PF-44	7.6	370	100	433	2
P5-45	6.89	230	88	757	2
PF-46	6.05	140	38	822	2

TABLE TWO
DEMINERALIZER 11 (DF) SUMMARY

ID	$\begin{aligned} & \text { Final } \\ & \mathrm{pH} \end{aligned}$	Final Cond, umho	$\begin{gathered} \text { Final } \\ \mathrm{Na}, \mathrm{ppm} \\ \hline \end{gathered}$	B, ppm	Category
DF-1	5.27	2.25	<1	600	1
DF-2	5.87	1.74	1.9	486	1
DF-3	5.56	55.7	<1	577	2
DF-4	8.62	58	9.8	75	2
DF-5	7.11	77	6.0	901	2
DF-6	6.37	0.7	<1	22	1
DF-7	7.21	0.405	<1	<10	1
DF-8	7.56	935	120	2066	2
DF-9	7.66	1025	110	1926	2
DF-10	5.56	4.62	<1	1428	1
DF-11	6.93	730	75	3354	2
DF-12	5.24	3.15	<1	945	1
DF-13	5.53	3.0	<1	995	1

table three
DEMINERALIZER 02 (DS) SURPGRY

Fin	Final pH	Final Cond, umho	Final Na, ppm	B, ppm	Category
DS-1	5.68	1.82	<1	420	1
DS-2	5.18	2.91	<1	893	1
DS-3	6.21	0.53	<1	15.1	1
DS-6	6.92	0.56	<1	11	1
DS-5	5.28	3.95	<1	1385	1
DS-6	5.34	3.10	<1	736	1

ATLACHENT II

ATTACRMENT II

Corrosion of Carbon Sceel Liners in Categories (1) and (2)

The effect of of on the corrosion rate of carbon areel in serated demineralizel water is significant, as can be seen in Pigure i. It is readily apparent that between pZ 4 to 10 where the pH is normally expected to be inside the liners, that the corrosion rate is relatively uniform and oo the order of :0 mila per year.

For the purpose of defining the theorerical maximum amount of iron which can be corroded by a puddle of water on the cank $£ 100 r$ under the above condicions the following assumptions vere made:

1. The amount of oxygen which exists inside the liner is equal to 20% of the volume of air which would be present inside the liner assuming the resin already occupies 40% of the volume and that no in-leakage of alr will occur once the liner is sealed.
2. For solutions in categories (1) and (2) the cotal amount of corrosion will be dependent only on the amount of oxygen available.

Scoichiomeric calculations indicate approximately 4.6 pounds of iron can be converted to $\mathrm{Fe}_{3} \mathrm{O}_{4}$ in a 6×6 iner at the rime oxygen is depleted. With 150a having a densicy of $.28 \mathrm{lbs} / \mathrm{cu}$. 1n. approximately 15 cubic inches of wetal could be dissolved. This dissolution can occur over a variety of areas and will depend on the size of the corrosion initiation site and the progression of the corrosion laterally under the coating increasing the area of actack. Other factors affecting the corrosion rate would be the gradual depletion of oxygen in the system and the build up of corrosion products slowing the diffusion of oxygen to the corroding surface. Both these phenomena will tead to slow che corrosion reaction below the estimated 10 mpy.

Based on this assessment, perforation of the liners in categories (1) and (2) could occur in approximately 25 years. This is umlikely, however, as the corrosion rates will be decreasing with rime as oxygen depletes. Aso as

Corrosion of Carbon Steel Liners in Categories (1) and (2) (continued)
the corroaion spreada out to larger areas, there wil not be aufficient oxygea to produce complete penetration. In addition, thia analysis aasmes oo adverse changes in the enviroment with cime. The inner botcom, however, may have been reakened in the corroded area depending on how loas the solution has been in contact with the ateel and precautions may have to be caken to prevent accidental perforation if the liner were ever lifted. Rowever, at a 10 mil per year corrosion rate this in not aear ream concera.

REFERENCES

1. W. G. Whiman and R. P. Pussel. The Acid Corrosion of Metals, Industrial and Engineering Cheeistry, Vol. 17. No. 4, 1925.
2. M. G. Fontana and N. D. Green. Corrosion Engineering, 2nd Ed.. McGraw Hill
3. H. H. Uhlis. Corrosion Handbook, John wiley \& Sons
4. H. H. Uhlig. Corrosion and Corrosion Control, John Wiley \& Sons
5. G. W. Whicmar. R. P. Russell and V. J. Nitien. Effect of Hydrogen Ion

Concentration in the Submerged Corrosion of Steel, Industrial and Engineering Chemistry, Vol. 16, No. 7. 1924.
6. F. N. Speller. Corrosion, Causes and Prevention, MeGraw Rill

 temaczacure (inintman. siussedi. aru cieieri).

[^0]: ${ }^{1}$ R. C, McFarland, "The Effect of Ganma Radiation on Ion Exciange Resins and Activated Charcoal", Appendices A \& 3 to Section 3 of TMI-II-RR-6, TMI Unit 2 Recovery Quarterly Progress Report to NRC for the Period Ending March 31, 1980, Metropolitan Edison Company, Middletown, PA, pp. 3-18 to 3-40, 1980.

